
CHI 2000 • 1 -6 APRIL 2000 Papers

The Streamlined Cognitive Walkthrough Method, Working
Around Social Constraints Encountered in a Software

Development Company
Rick Spencer

M i c r o s o f t C o r p o r a t i o n

O n e M i c r o s o f t W a y

R e d m o n d , W A 9 8 0 5 2 - 6 3 9 9 U S A

(425) 9 3 6 - 1 1 3 8

ricksp @microsoft.corn

ABSTRACT
The cognitive walkthrough method described by Wharton
et al. may be difficult to apply in a large software
development company because of social constraints that
exist in such companies. Managers, developers, and other
team members are pressured for time, tend to lapse into
lengthy design discussions, and are sometimes defensive
about their user-interface designs. By enforcing four ground
rules, explicitly defusing defensiveness, and streamlining
the cognitive walkthrough method and data collection
procedures, these social constraints can be overcome, and
useful, valid data can be obtained. This paper describes a
modified cognitive walkthrough process that accomplishes
these goals, and has been applied in a large software
development company.

Keywords
Cognitive Walkthrough, Usability Inspection

INTRODUCTION
The cognitive walkthrough (CW) method was designed to
evaluate the learnability of software interfaces without the
overhead of full-blown empirical usability lab testing. The
CW can be applied early in the design process because it
can be applied when only the user interface is specified. As
a result, the CW method is valuable for evaluating
!earnability of the integration of features when those
features are at various stages of development.

I have used the cognitive walkthrough method to evaluate
software at a software company under the constraints of an
actual software development cycle. This paper describes the
problems I encountered applying the Wharton, et al.
cognitive walkthrough method (WCW) [4] within these
constraints, and outlines a modified CW process that works
better. The effectiveness and validity of the modified
method, is examined as well.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed fbr profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on selwers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI '2000 The Hague, Amsterdam
Copyright ACM 2000 1-58113-216-6/00/04...$5.00

The CW method was used several times over the course of
one software development cycle to evaluate user-interface
specification for the latest release of an established
Integrated Development Environment (IDE). An IDE
allows programmers to edit code, design user interfaces,
compile code, debug code, and perform most other
programming tasks within a single computer program. An
IDE, therefore, tends to be extremely feature rich, and
requires a fairly large team, with distributed design
responsibilities, to design and implement [1].

The design team for this product is large - approximately
50-100 people - and many different people have
responsibility for specifying, designing, and implementing
the UI. For many tasks that users will perform with the IDE,
no one specification describes completely how that task will
be accomplished. Rather, a set of specifications, each
written and owned by a different person, must be
understood and evaluated to understand how users will
accomplish tasks with the IDE when it ships.

The CW method seemed quite well suited to evaluating the
learnability of the IDE, since a single evaluation could tie
together the work of several sub teams and the
specifications for which they were responsible.

Wharton et al. proscribe performing a task analysis for the
UI elements in question, and walking through the task
analysis step by step with the team. For each step, the team
attempts to tell a plausible story for each of four questions
(See Table 1). For steps where plausible answers are
generated by the team, the team records those stories,
otherwise they record that a plausible story could not be
told.

Table I

4 questions from Wharton et al. (1994)

1. Will the user try to achieve the right effect?

2. Will the user notice that the correct action is available?

3. Will the user associate the correct action with the effect
that user is trying to achieve?

Tk-4~ /ar'/J~t=sF;i'E Z S H~:.A~¢~-
3 5 3

CHI Letters volume 2 • issue 1

Papers CHI 2 0 0 0 • I - 6 APRIL 2 0 0 0

4. If the correct action is performed, will the user see that
progress is being made toward the solution of the task?

PROBLEMS APPLYING THE CW METHOD
In the first application of the CW method the cognitive
walkthrough procedure detailed in Wharton et al [4] was
followed. However, the method failed to produce good
results and the development team did not perceive it as
useful, at least in part because the WCW method did not
accommodate some of the social constraints (SC) of a large
software development company.

Table 2

Social Constraints That Hampered the Effectiveness of the
CW Method

SC I - Time pressure

SC 2 - Lengthy design discussions

SC 3 - Design defensiveness

SC 1 - Time Pressure

Generally, many managers and developers feel pressure to
make very good use of their time, and any activities
perceived to take more time than justified by the results are
avoided. When developing software, requirements,
constraints, and changes are applied to a specification over
time, As a result, numerous design iterations occur late in
the development process, when a development team usually
feels considerable pressure to actually implement
specifications, and may not think they have the time to
evaluate them properly.

Even user interface specialists often feel that there is not
sufficient time in the software development cycle to
perform their jobs well [1].

Voluminous output of WCW sessions
Following the procedure outlined in Wharton, et al., a
plausible story is written down at every step where a
plausible story is produced. As a result, the team writes
down things like, "From previous experience, the user
knows that the Print command is available in the File
menu" and "From previous experience, the user knows that
the Print command will activate the Print dialog."

Recording such obvious observations may not be perceived
by the team as a good use of their limited time.
Furthermore, what purpose such written comments will
serve in the future may not be clear, and the ratio of useful
written comments (problems, design ideas, and design gaps)
will be diminished, diminishing the perception of usefulness
for the CW exercise.

Finally, sorting the potential problems identified from the
plausible stories may lengthen the time from the CW to
when the problems are reported.

CW sessions s eem to go too sowly
When doing a WCW the team answers four questions for
each step. This results in the team dwelling on each step,
even ones that are obviously designed correctly because
they follow standard user-interface convention, or because
that part of the user interface l~as been working for users
over many previous versions. Furthermore, similar
plausible stories are often repeated multiple times for the
same step.

For steps with obvious problems, asking the four questions
can seem redundant, especially if the team has had
difficulty distinguishing between the first three questions
and has brought up the issues pertinent to questions 2 and 3
while attempting to answer question 1.

Others have also found the CW method to be too slow. For
instance, the Cognitive Jogthrough method was developed
for the sole reason that one development team found that
they were unable to cover enough material while using the
CW method [3].

SC 2 - Lengthy design discussions
WHEN A design or user-interface problem is identified by
a design team, that team will often attempt to resolve the
problem "in-line" during the CW session. Time allotted to
evaluation is spent designing instead.

SC 3 - Design Defensiveness
As surprising as it may seem, it turns out that not everyone
who puts considerable effort into creating user interface
specifications enjoys having those specifications publicly
evaluated by others. Specification writers may appear
personally offended by the suggestion that there
specifications should undergo an evaluation process in the
first place, because, after all, they may have been working
on those specifications for many months, or even a year or
more.

Since, in the short term, problems that are identified may
result in more work for a team that could already be under
considerable time pressure, some team members may try to
defend their designs and specifications during the CW, may
be argumentative, and may reject seemingly obvious
observations as being opinions that lack data to support
them.

CONDUCTING A STREAM-LINED COGNITIVE
WALKTHROUGH
The three social constraints that limit the effectiveness of
the WCW method have been addressed through a
combination of approaches. Namely, properly preparing the
team to perform a CW, modifications to the CW method
itself, and strong leadership during the CW process to keep
team members from dwelling on design discussions or
defending their designs.

Table 3

Overview of .the Cognitive Walkthrough process, adapted
directly from Wharton, et al [4]

354 ~k~il~l

CHI 2000 • 1-6 APRIL 2000 Papers
1. Define inputs to the walkthrough

a. Identification of users

b. Sample tasks for evaluation

c. Action sequences for completing the tasks

d. Description or implementation of interface

2. Convene the walkthrough

a. Describe the goals of the walkthrough

b. Describe what will be done during the CW

c. Describe what will not be done during the
walkthrough

d. Explicitly defuse defensiveness

e. Post ground rules in a visible place

f. Assign roles

g. Appeal for submission to leadership

3. Walkthrough the action sequences for each task

a. Tell a credible story for these two questions:

- Will the user know what to do at this step?

- If the user does the right thing, will they know
that they did the right thing, and are making progress
towards their goal?

b. Maintain control of the CW, enforce the ground
rules

4. Record critical information

a. Possible learnability problems

b. Design ideas

c. Design gaps

d. Problems in the Task Analysis

5. Revise the interface to fix the problems

DETAILED DESCRIPTION OF THE STREAMLINED
WALKTHROUGH PROCEDURE
1. Define inputs to walkthrough
Before the CW session, the usability professional is
responsible for defining the important user task scenario or
scenarios and producing a task analysis of those scenarios
by explicating the action sequences necessary for
accomplishing the tasks in the scenarios. Wharton et al.
should be used as a resource for determining how to decide
on the scenarios and how to describe the task sequence.

2. Convene the walkthrough
The first step is to describe the goals of performing the
walkthrough. Namely, the walkthrough is an opportunity to
evaluate the user interface in terms of learnability. This is
the first opportunity to address SC 3 - Design
defensiveness, by defusing defensiveness on the part of any
team members. It is important that the usability professional
points out that learnability is only one aspect of usability,

and that the team recognizes that learnability may have
been traded off for other aspects of usability. Nonetheless,
there is inherent value in knowing when users may
encounter problems learning an interface as the issue could
be explicitly addressed elsewhere, for example, though
marketing or the help system.

A CW session is analytical in nature, and therefore lacks the
definitiveness of an empirical usability tests. In light of the
CW method's tentative nature, specification owners may
resent absolute proclamations that "this is a problem". The
usability specialist should, therefore, take care to use softer
language, like "this is a potential problem, we need to think
about it". Constant reference to the tentative nature of the
finding should help defuse defensiveness.

The usability professional then points out for the first time
that the CW is an evaluation session, not a design session,
and goes on to describe the process of walking through the
task sequence and answering the two questions for each
step (See table 4). The usability professional then gives an
example of an action sequence from software not currently
under consideration and that has plausible answers to the
two questions, and the team is encouraged to produce those
answers. Then the usability professional gives another
example, one without plausible answers, and the team is
prompted to try to provide answers. For each example, the
usability professional should model the format that the data
is captured in before proceeding with preparing the team for
the CW.

Table 4

2 questions from the streamlined CW

1. Will the user know what to do at this step?

2. If the user does the right thing, will they know that they
did the right thing, and are making progress towards their
goal?

After describing what the team will do during the
walkthrough, describe what the team will not do during the
walkthrough. This is the first opportunity to directly address
SC 2 - Lengthy design discussions, and indirectly address
SC 3 - Design defensiveness. In particular, the usability
professional explains that if the team finds a step with
possible learnability issues, they will note the possible
problem and move on to the next step, but they won't
redesign the interface. Furthermore, the usability
professional should explain that if the team encounters a
gap in the design (for example when it is not clear from the
specification what action sequence the user is supposed to
perform), the team will note the gap and move on, but they
won't stop and design the missing actions. Also, if a design
idea is suggested, the team may briefly discuss the design
idea, note it, and then move on, but the team will not flesh it
out. Lastly, if the task analysis appears to be faulty, or only
describes one of multiple possible paths towards achieving

355

Papers CHI 2000 • 1 -6 APRIL 2000

the goal, then the problem will be noted and the team will
move on, but the task analysis will not be revised during the
CW session.

After the team understands what will and will not be done
during the walkthrough session, the usability engineer
explicitly addresses SC 3 - Design defensiveness. Since the
CW session is an evaluation session, and not a design
session, no changes will be made during the CW session. If
changes are going to be made to specifications, they will be
made later. Therefore, if anyone feels that a specification
needs to be defended, the time to do so is later. More
importantly, defending designs or specifications during the
CW is not productive and will distract the team from
completing the evaluation.

After the CW process is explained and defensiveness
defused, the usability professional should post the ground
rules for conducting the walkthrough. These ground rules
can then be referred to later in order to keep the team on
track.

Table 5

Ground rules for conducting a streamlined CW

1. No designing

2. No defending a design

3. No debating cognitive theory

4, The usability specialist is the leader of the session

Ground rule 3 is a further effort to address SC 3 - Design
defensiveness. In my experience, team members who feel
that their designs are threatened may appeal to esoteric
cognitive theories in order to justify their designs or to
explain away a possible issue. The usability professional
should state that as long as a significant number of team
members feel there is a possible issue, it should be noted

Responsibility for collecting data from the walkthrough is
distributed across the team participating in the walkthrough.
Four kinds of data will be collected, design ideas, design
gaps, potential learnability problems, and flaws in the task
analysis. If the team participating in the CW is large
enough, and the scope of the tasks under scrutiny cover
multiple areas of user interface design, then different team
members can be assigned the role of collecting potential
learnability problems for different areas. Generally, team
members can be assigned to collecting data on the areas for
which they are responsible. Usually, one person is sufficient
for collecting both design ideas and design gaps; however,
if there are enough team members, then one person can
collect design ideas and one person can collect design gaps.

It is important to explicitly assign a role for collecting flaws
in the task analysis. This helps address SC 3 - Design
defensiveness, by modeling a willingness to admit to and
take responsibility for oversights and mistakes.

Lastly, the usability professional should explain that in
order for the CW to proceed efficiently, the team must
follow ground rule 4 and submit to the usability
professional's leadership. Then an explicit appeal to submit
to leadership should be made.

3. Walkthrough the action sequences for each task
The proposed modified CW severely prunes the evaluation
procedure for each action sequence. For each action
sequence, the usability professional first describes the
action sequence and the system state after the correct action
is performed. Then the team tries to answer the two
questions for each action sequence.

Wharton et al.'s questions 1-3 evaluate whether the user
will know what the next appropriate step is, and how to do
it. For the streamlined CW, these three questions have been
collapsed into one question, "Can you tell a credible story
that the user will know what to do?" Question 4 is slightly
recast, "If the user does the step correctly, and <describe
system response>, is there a credible story to explain that
they knew they did the right thing?

During the course of walking through the action sequences,
the usability professional must take care to enforce the
ground rules, making sure that the CW session does not
lapse into a design session, that team members do not stop
the process to defend their designs, and that the team does
not get wrapped up in debates over cognitive issues.

4. Record critical information
If, for a particular action sequence, a plausible story is told
for both questions, then nothing is recorded, and the team
moves on to the next task. This helps address SC 1 - Time
pressure, by spending minimal time on steps that appear to
be properly designed.

Sometimes a plausible story cannot be told because the
interface design assumes knowledge that users might not
have. In such cases, record the failure and the knowledge
that the user will need to formulate the goal, for instance,
"Users might not click the ellipsis button to modify the list,
because they might not know that they can modify the list."

Often, the team will not try to tell a plausible story, but
instead will skip right to pointing out a design flaw. In this
case, a bullet should be captured that represents the
problem for the user and the design flaw. For example,
"Users might not know that they can modify the auto
generated code because it looks the same as read only
code."

During a CW session, team members will likely bring
design ideas that address problems encountered or suggest
totally alternative designs. It is important to capture these
design ideas because they may prove valuable later, and
summarizing a design idea as a bullet is a good way to end
design discussions and move on. For example, a design idea

~,~'1~
356 ~--k~l~

CHI 2000 • 1-6 APRIL 2000 Papers

bullet may read "DI: Automatically generate the code for
the user, instead of having the user issue the command."
This also allows team members who raise design ideas to
feel that their contribution was valued, while allowing the
team to continue with the evaluation.

The usability professional is responsible for stopping a
design discussion before it gets out of hand. When exactly
to intercede may be affected by many factors. Generally, a
good time to intercede and move on is as soon as a design
idea is well-formed enough to be expressed in a bullet, but
before other team members begin pointing out flaws in the
design idea, or elaborating on it.

During the course of the CW session, the team may find
that they forgot to design some important functionality.
"How does the user do such and such a setting?" Such
design gaps should be captured as a bullet, but definitely
not designed during the CW session. If that gap is
encountered again during the CW, the team must agree to
hand wave over it, and assume that the ultimate design will
support the functionality,

When a bullet is being captured, it is helpful for the
usability professional to rephrase it in the form of a
hypothesis. This allows the team to express consensus on
the bullet that is being captured, as well as giving the
person capturing that bullet a head start on writing it down
properly.

If the usability professional made a mistake in the task
analysis used in the CW, the problems in the analysis
should be noted, and the team should move on. It is
important to not try to retool the task analysis during the
CW session. It is far better either skip the part that is wrong
and cover it during a later session, or if the mistake was
substantial, the usability professional should apologize for
the misunderstanding, and reconvene the CW at a later
time, after the task analysis is done properly.

Attempting to retool a task analysis in a few minutes is not
likely to lead to a quality analysis. Major mistakes should
be rare if the task analysis is checked for accuracy by the
specification owners before the CW session.

IMPACT ON THE EFFECTIVENESS AND VALIDITY OF
THE CW METHOD
Preparing the team, clearly laying out ground rules, and
defusing defensiveness are steps that can be confidently
added to the CW method without too much fear of
decreasing the effectiveness or validity of the CW method.
But what about the more radical changes, such as collapsing
three questions into one question, disallowing design
discussions, and capturing less data during the
walkthrough? I will discuss these in turn, in order of
probable severity in negative impact on the method.

Collapsing three questions into one
This modification to the CW method probably leads to a
coarser-grained evaluation of the user interface under
scrutiny. Logically, asking only half as many questions

about an action sequence will probably lead to fewer
problems identified for each step, presumably by both a
function of time, less time is spent on each question, and a
function of detail, each action sequence is examined in less
detail.

Furthermore, when problems are encountered, the cause of
the problem may not be revealed as effectively as in the
WCW method. For example, the result of the first question
from the streamlined CW might read, "Users might not
know that the Print command will bring up the print
dialog." However, the same datum from the WCW method
might read, "Users might not associate the Print command
with activating the Print Dialog, because the word 'Print'
implies an action." The datum from the WCW seems to
imply a cause and solution to the problem, where the
streamlined method merely identifies the problem.

In practice, however, I have not found that the WCW does
not lead to better data because the team is generally
interested only in identifying problems and getting enough
information to fix them. Furthermore, many people have
trouble understanding the nuances of Wharton, et al.'s four
questions [2].

Disallowing Design discussions
Given the best of all possible worlds, letting design
discussion play out at the time that potential learnability
problems are identified could lead to some very effective
design sessions. When design discussions are blocked from
the evaluation session, the usability professional is trading
off identifying possible solutions to identified problems for
coverage.

However, open-ended design sessions take an indeterminate
amount of time, and may or may not result in a workable
redesign. Worse stills, if the team redesigns as they proceed
through the CW, then problems will be resolved in the
order that they occur in the task sequence, with no
necessary relationship to the severity of the problems. Time
taken up by redesign may result in truncation of the CW
because the team simply runs out of time. Important steps
involving completing tasks may therefore be missed. In
other words, redesigning during the CW violates a basic
dictum of software design, to profile before you optimize.

However, this bias against design discussions during CW
sessions is not universally shared. In fact, Rowley and
Rhoades specifically created the Cognitive Jogthrough
method because they found that a WCW did not allow
enough time for design discussions [3] !

Capturing Less Data
Using the streamlined method, the plausible stories are not
captured. Though this will clearly speed the process, it
means that design rationale is not captured. Later in the
process, if there are questions about the data from the CW,
it may be difficult to remember why a particular step was
considered to be acceptable by the team. Furthermore, the

~k.~lllll 357

Papers CHI 2000 * 1 -6 APRIL 2000

design rational will not be available later in the design
process.

EFFECTIVENESS OF THE STREAMLINED CW
The streamlined CW method was used to evaluate the
learnability of an IDE under development. Specifically, the
task of performing a series of programming tasks necessary
to create and deploy the basics of a one kind of computer
program was evaluated. The programming task was
considered to be one of the most important programming
tasks for the version of the IDE under development, and it
incorporated functionality described in multiple
specifications. At the time of the CW, the necessary
functionality was months from being sufficiently well
implemented for traditional usability lab testing.

Methods
The task analysis took one usability professional with a
background in task analysis about 25 hours to complete.
Since the specifications for the task were distributed across
many documents, and not all of the documents were up to
date, most of the 25 hours was spent researching
specifications and interviewing program managers
responsible for designing various parts of the user interface.

A team of approximately 8 people was convened to conduct
the CW, including 3 usability specialists, 1 graphic
designer, and 4 project managers responsible for various
aspects of the user-interface specification. Only one
usability professional leading the session was familiar with
CW methods. The walkthrough itself took about 2.5 hours,
and was conducted over 2 sessions, separated in time by
about a week. Only the results from the first session, which
took about 1.5 hours and covered 32 action sequences, are
discussed here. About 20 minutes of the first session were
used to prepare the team, assign roles, and defuse
defensiveness. Since the task analysis spanned many
specifications, most team members were not familiar with
all of the action sequences. Therefore, many minutes were
required to explain the user action and the system response
for each of the 32 action sequences covered.

Results
Twenty-four potential problems and l I design ideas were
identified during the first 1.5-hour session. Of the 24
potential problems generated during the CW, 14 suggested
that users would lack sufficient knowledge to take the
correct action, and 10 suggested that the IDE did not
provide good feedback to the user when the correct action
was taken.. Six of the 11 design ideas were specific
solutions to one or more of the potential issues.

These results are consistent with the hypothesis that the
streamlined CW method trades granularity for coverage.
The 10 potential usability problems identified that lacked
an explicit cause also did not suggest an explicit solution. In
other words, for many of the identified problems, the team
agreed that they were potential problems, but the cause of
the problems were attributed only to a lack of knowledge on

the part of users, and not necessarily to a mismatch between
the users' knowledge and the user interface. Had the team
considered each of the first ,three questions from the
Wharton method, it is possible~that a better understanding
of the causes of the problems would have surfaced.

Generally, the efforts to defuse defensiveness on the part of
the team members were successful, as the team did not
spend much time defending design decisions, and an
atmosphere of cooperation seemed to prevail. When
program managers found themselves defending their
design, they tended to remember ground rule 2, drop the
discussion, and allow the CW to continue. After the CW
session, the team members expressed that it was a useful
exercise, and in fact many CW sessions have been
conducted since.

EXTERNAL VALIDITY
The difficulty in assessing the external validity of any
usability inspection method extends, of course, to the
streamlined CW as well. Ideally, the results of the CW
session would be evaluated against the results of an
empirical usability test, where the usability specialists
conducting the test were not aware of the CW results.
Naturally, such a luxury is not afforded within the scope of
this effort. However, an opportunity to at least roughly
assess the streamlined CW method did present itself.

Methods
Usability tests on the IDE have been conducted, and one of
the usability tests did include some overlap with the
material covered in the CW session. While the usability
specialist who conducted the usability test was present at
the CW session, he was not the usability specialist who led
it. Fortunately, design changes suggested from the results
of the CW sessions had not yet been implemented in the
area of the IDE user interface that was being tested.

Results
Nine problems were discovered in the usability test of the
UI covered in the CW session. Of those 9 problems, the
CW identified 6. However, for the same user-interface
elements, the usability test covered more functionality than
the CW session did. For example, in most of the action
sequences in the CW session, the user could accept default
values to be successful, but in the user test participants
needed to adjust those defaults to be successful.

This comparison suggests that, a team can expect to
uncover with a streamlined CW many issues that would also
be uncovered in an empirical usability test.

For the portions of the user interface covered by both the
CW session and the usability test, 13 potential problems
were predicted by the CW sessions. Of those, 7 were
directly related to findings in the usability report, 4 were
indirectly related to problems in the usability report, and 2
were not related to problems in the usability report.

The result of this comparison suggests that, for those parts
of the user interface covered by a streamlined CW session,

358 ~ k.~i~

CHI 2000 • 1-6 APRIL 2000 Papers

the team can expect to hit a few false positives, get a sense
of which steps may cause some problems for users, and
accurately predict many learnability problems.

CONCLUSION
The Wharton, et al cognitive walkthrough method does not
take into account several social realities of large software
companies. The method can be applied successfully if the
usability specialist takes care to properly prepare the team
for the walkthrough, avoids design discussions during the
walkthrough, explicitly defuses defensiveness among team
members, and streamlines the procedure by collapsing the
first three questions into one question, and captures data
selectively.

Streamlining the walkthrough may trade-off granularity for
coverage, but without that trade off, program managers and
developers may perceive the walkthrough as being an
inefficient use of time. Performing a streamlined CW is a
good way to profile a user interface for potential problem
areas, identify many steps that may be problematic for
users, and accurately predict many usability problems.

However the method will probably result in a few false
positives.

REFERENCES
1. Grudin, J. Systemic sources of suboptimal interface

design in large product development organizations.
Human-Computer Interactions 6, 2 (1991), 147-196.

2. John, B. E, & Packer, H. Learning and using the
cognitive walkthrough method: A case study approach,
in Proceedings of CHI '95 (Denver CO, May 1995),
ACM Press, 429-436.

3. Rowley, D. E., and Rhoades, D. G. The cognitive
jogthrough: A fast-paced user interface evaluation
procedure. Proceedings of CH1 '92 (May 1992), ACM
Press, 389-395.

4. Wharton, C. W., Reiman, J., Lewis, C. & Polson, P.
(1994) The cognitive walkthrough method: A
practitioner's guide. In J. K. Nielson, & R. L. Mack
(Eds.) Usability Inspection Methods. Wiley, New York,
1994.

359

