

Infusion 1.5 Documentation

Caption goes here: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc luctus
tristique ante non faucibus. Mauris eu libero sit amet est suscipit tempor.

Caption goes here: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc luctus tristique ante non faucibus.
Mauris eu libero sit amet est suscipit tempor.

GENERAL

Introduction

Getting Started

Framework Concepts

Components

Understanding Infusion Components

Understanding Component Options and
their Defaults

Component Grades

Options Merging

Component Lifecycle

Inversion of Control

How to use Infusion IoC

Subcomponent Declaration

Contexts

Invokers

Expansion of Component Options

IoCSS

Declarative this-ism in IoC

IoC References

Events

Infusion Event System

Event injection and boiling

ChangeApplier

Model Relay

Progressive Enhancement

Renderer

How To Use the Renderer

Component Trees

 Renderer Component Trees

 ProtoComponent Types

 Renderer Component Tree Expanders

Cutpoints

Renderer Components

Renderer Decorators

Preferences Framework

Preferences Editor

Builder

 Primary Schema

 Auxiliary Schema

Enactors

TUTORIALS

Framework Concepts

Edit on Github

Decorator Type

Decorator or
Type

func

args
Array of
Object

String

Arguments to the
jQuery function

jQuery function
to be invoked

Field Name Field Type Field Description Example

decorators: [{
 type: "jQuery",
 func: "click",
 args: function() {$(this).hide();}
}]

API

Understanding Component...

Understanding Infusion
Components

Note: This is an example of a paragraph with emphasis. This functionality is
Sneak Peek status. This means that the APIs may change.

The first paragraph in an article is styled differently. Every
Infusion application is structured as a set of components.
An Infusion component can represent a visible component
on screen, a collection of related functionality such as an
object as in object-orientation, or simply a unit of work or
relationship between other components. This page provides
resources to help you understand components.

If you're creating an entire web application, your application would be
implemented as a component that coordinates interactions between other
components that handle the different parts of your application.

Examples

To help understand how a widget or application might be designed
using components, consider some of the components in the
Infusion Component Library:

Progress

The Infusion Progress component is single component with no
subcomponents. It has a number of UI elements that work together and are
updated programmatically to show the progress of some activity. It has a
pretty simple purpose and function, one that doesn't make much sense to
try to chunk up into multiple components.

Inline Edit

The Inline Edit component allows user to edit text in place, without switching
to a new screen, by simply switching into an in-place edit mode. The view
mode is implemented one way, with certain functionality (i.e. a tooltip, an
affordance to edit), and the edit mode is implemented differently: it's an edit
field. Conceptually, these two modes are rather different, and so they're
implemented as two separate subcomponents of the main Inline Edit
component.

Uploader

The Uploader allows users to add several files to a queue and then upload
them all at once. It is actually made up of several subcomponents: It has the
file queue view, which displays the files currently in the queue; it has a total
progress bar at the bottom. In turn, the file queue view component has its
own subcomponents.

What Does A Component Look Like?

A component is a regular JavaScript object that has certain characteristics.
The most simple components have a typeName and an id, but typical
components will have more:

Most will have:

• a creator function
 • the function that implementors invoke, which returns the component

object itself

• configuration options
 • various values that control the operation of the component, which can

be overridden by implementors to customize the component

• public functions

Depending on what the component is for, some will include infrastructure to
support

• events

• a model

• a view

• a renderer

New kinds of components are created by passing configuration information
to the 'fluid.defaults' function. This function will create the creator function
that will be used to instantiate the component. The Framework provides
supports for automatically creating components of various types, or
'grades'; as well, developers can create their own grades.

Examples with code

fluid.enhance.check({
 check1: "my.checking.function1",
 check2: "my.checking.function2",
 ...
});

The function fluid.enhance.check() will execute the specified functions
and store the results in the static environment using the associated key (e.g.
check1). The presence of the tags in the static environment can be used in
the context argument to fluid.demands().

Tables and larger images can fill all available width if required.

Infusion is created by fluidproject.org
Fluid is a project of the Inclusive Design Research Centre at OCAD University, funded by a grant from The Andrew W. Mellon Foundation.

