
GIT Tips and Tricks

On this Page

Best practices
Work in a branch
Merging Branches into master, and pushing to the
project repo
Commit Logs

Tips
Log
Diff
Resetting working copy
Resetting Individual Files
Deleting Branches
Stashing changes

See Also

git Documentation
github help
git manual
Pro Git Book
git-cheatsheet
git Primer [PDF]
YUI Theatre: Intro to Git
Github Tips and Tricks

Best practices

Work in a branch

It is best to keep your master branch clean and up-to-date with the project repo. This will provide you with a clean space to compare your "working" code
with, as well as a stable location to push changes back up to the project repo.

list all branches, including remotes
git branch -a

change branches, in this case switch to master
git checkout master

make a branch of master, and immediately switch to the branch
Note: it's best to name your branches after the jira you are working on (e.g. FLUID-xxxx)
git checkout -b FLUID-XXXX

It is best to name your branches after the jira that you are working on (e.g. FLUID-xxxx). This will make it easier for you to keep track of what the branch is
for. When you issue a pull request, push it to a public repo space (e.g. github), and/or merge the branch into master the branch name will be visible and act
as a means of indicating to others what changes are part of the branch.

There will be some occasions where you'll want to work directly in master, make sure you really mean to do it and that you are careful. Working directly in
master is likely not a common workflow and should probably only occur for cases where you have only a single commit that will be pushed to the project
repo right away.

Merging Branches into master, and pushing to the project repo

When you have a branch that is ready to go into the project repo you'll need to merge it into your clean, up-to-date master.

http://book.git-scm.com/
http://help.github.com/
http://www.kernel.org/pub/software/scm/git/docs/
http://progit.org/
http://www.ndpsoftware.com/git-cheatsheet.html
https://wiki.fluidproject.org/download/attachments/23562089/gitPrimer.pdf?version=1&modificationDate=1300962163445&api=v2
http://www.yuiblog.com/blog/2011/06/09/video-f2esummit2011-donnelly/
https://wiki.fluidproject.org/display/fluid/Github+Tips+and+Tricks

get the latest changes, where upstream is the project repo
git fetch upstream

view the changes that are in the project repo that aren't currently in your master
git log upstream/master ^master

view the changes that are in your master, that aren't in the project repo (should be none)
git log ^upstream/master master

update your master by merging in the changes from the project repo
assuming you are already in the master branch
git merge upstream/master

view the changes that are in master that aren't currently in your branch
git log master ^FLUID-xxxx

view the changes that are in your branch, that aren't in the master
git log ^master FLUID-xxxx

merge the branch into master.
Note: --no-ff forces a merge commit
Note: --log lists all the commits that are part of the merge (if there are lots of commits you may need to
increase the max number --log=n)
git merge FLUID-xxxx --no-ff --log

push to your public repo, origin, first to make sure things worked
git push origin master

push to the project repo
git push upstream master

When merging your branch back into master, always make sure to set the --no-ff and --log flags. The --no-ff flag forces a merge commit. If this isn't set,
and a fast-forward merge occurs, the master branch can take on the characteristics of the branch as though master was a clone of the branch. This may
be undesirable, for example the git's graphing feature will make the branch commits appear to be the mainline of code. The --log flag will place the
summary line of the commits included in the merge, into the merge commit. This makes tracking which commits were part of the merge much easier.

It's also a good idea to push to your public repository before pushing to the project repo. This will give you another chance to make sure everything is as it
should be. For example, in github you can review the commit logs and the network graph to make sure the merge was performed properly.

Commit Logs

In git, commit logs are structured a lot like e-mails. The first line is a summary, 50 characters or less. The remainder of the commit log should contain the
detailed description of what is being committed.

#summary, it should start with a jira number.
FLUID-xxxx: Adding in feature x to component y

#This is just a mock example, a real commit log would have proper details about the changes in a commit
Feature x adds does such and such a function, which is necessary for component y.

The summary of each commit should start with the jira number for the issue being worked on. In the rare case where it is not necessary to file a jira for a
change, "NOJIRA:" can be used instead.

Notice the empty line between the summary and the body of the commit log. Some clients have trouble distinguishing the two parts if they are not
separated like this.

Tips

Log

(see:)git-log

Lists commits in branch x that aren't in branch y

git log x ^y

http://www.kernel.org/pub/software/scm/git/docs/git-log.html

Lists commits and also shows the diff of the changes

git log -p

Diff

(see:)git-diff

Diff of unstaged changes

git diff

Diff of staged changes

git diff --cached

Diff between two commits

git diff commitHash1 commitHash2

Diff between branch x and y

git diff x y

Diff between a path at a revision and a path in the working tree

git diff rev:path1 path2

Resetting working copy

(see:)git-reset
(For a detailed description of all the types of reset available see:);http://git-scm.com/2011/07/11/reset.html

Unstage changes

git reset HEAD

Undoes all changes, staged or not, so that the working copy is back to the state of the last commit

git reset HEAD --hard

Sets the working copy back to the state of the specified commit

git reset commitHash --hard

Resetting Individual Files

commitHash can be replaced by either a commit hash, tag, or branch name.
You can also use the "~1" at the end of a commit hash to use the 1 before.
This is good when you know the commit with the error.
(See the "Reset with a path" and "Check it out" sections:);http://git-scm.com/2011/07/11/reset.html

git checkout commitHash path/to/file/

Another method, which preserves the working directory, is to use git reset

http://www.kernel.org/pub/software/scm/git/docs/git-diff.html
http://www.kernel.org/pub/software/scm/git/docs/git-reset.html
http://git-scm.com/2011/07/11/reset.html
http://git-scm.com/2011/07/11/reset.html

git reset commitHash path/to/file/

Deleting Branches

Deletes local branch x

git branch -d x

#to force a branch to delete even when it has unmerged changes
git branch -D x

Deletes branch x from remote repo

#note the ":"
git push remoteRepo :x

Remove stale branches fetched from the remote at remoteName

git remote prune remoteName

Stashing changes

Useful to temporarily save changes that aren't ready to be committed

git stash

Re-apply stashed changes. If more than one set of stashed changes, you can specify which stash to apply.

git stash apply <stash name>

List stashed changes

git stash list

Clear stash

git stash clear

	GIT Tips and Tricks

