
1.

2.

1.
2.

3.

4.

Component Lifecycle
This page outlines the sequence of events in the instantiation of a Fluid component. Some of
these events are the responsibility of the runtime, some, of the user, and some, of the Fluid
framework.

Setting up a Fluid component

Defining a component requires two steps:

Registering the component's default options with the framework by issuing a call to
.fluid.defaults

Defining a suitably namespaced which constructs the component.creator function

These two actions may be performed in any order, since none of the code in the creator
function will execute until the component is instantiated. As well as general default options, f

 also sets up the structure for particularly meaningful component luid.defaults
configuration such as , selectors and subcomponents. This section of events DOM binding
the process is covered by the page.Fluid Component API

On This Page

Setting up a Fluid component
Actions within the creator function

fluid.initView
fluid.initSubcomponents

Mature life, for a component

See Also

How to Define a Unit
Infusion Framework
Fluid Component API
Events for Component Developers

Actions within the creator function

In theory, code within the creator function itself is largely unconstrained. However, to take full advantage of the facilities of the Fluid Framework, there are
some standard calls that should be made, of which the most important is a call to .fluid.initView

fluid.initView

A call to should be amongst the first, or perhaps the very first statement within the creator function. For example, the start of a creator fluid.initView
function for might look as follows:fluid.reorderer

fluid.reorderer = function (container, options) {
 var that = fluid.initView("fluid.reorderer", container, options);
 options = that.options; // The live, fully merged options are available at that.options

fluid.initView takes care of a number of responsibilities for the user. Its overall workflow, in the abstract, is as follows:

Instantiate a new, empty Object to form the overall component .that
Initialise the component container:

Evaluate the argument by performing a jQuery search, if necessary.container
If the container does not represent a single unique DOM node, throw an error.

Initialise the component options:
Look up any default options that may have been stored previously using fluid.default
Merge the options specified by the user with a clone of the default options.
Attach the newly merged options structure as the member of the top-level .options that

Initialise the component events:
For each entry discovered in the property of the resulting options structure, instantiate an which will be attached to events event firer
the newly instantiated component, available at the top-level under the subobject .that events

https://wiki.fluidproject.org/display/Infusion13/How+to+Define+a+Unit
https://wiki.fluidproject.org/display/Infusion13/Infusion+Event+System
https://wiki.fluidproject.org/display/Infusion13/DOM+Binder
https://wiki.fluidproject.org/display/Infusion13/Fluid+Component+API
https://wiki.fluidproject.org/display/Infusion13/How+to+Define+a+Unit
https://wiki.fluidproject.org/display/Infusion13/Infusion+Framework
https://wiki.fluidproject.org/display/Infusion13/Fluid+Component+API
https://wiki.fluidproject.org/display/Infusion13/Events+for+Component+Developers
https://wiki.fluidproject.org/display/Infusion13/that
https://wiki.fluidproject.org/display/Infusion13/Options+Merging+for+Infusion+Components
https://wiki.fluidproject.org/display/Infusion13/Infusion+Event+System
https://wiki.fluidproject.org/display/Infusion13/that

4.

5.

6.

For each entry discovered in the member of the resulting options structure, register the listener with the appropriate event listeners
object.

Initialise the :DOM Binder
Instantiate a new DOM Binder with the property from the resulting options structure.selectors
Fuse the binder's method onto the top-level , and the DOM binder itself as the member .locate that dom

Return the resulting initialised object.that

The stereotypical nature of this workflow provides a stable for the layout and function of a Fluid component, offloading a good deal of tedious convention
checking and wiring code off the developer. After making this single, simple signatured API call, a developer is given an object initialised with a
considerable amount of helpful functionality, laid out in standard convention.

fluid.initSubcomponents

If the component has a complex structure, composed of various independent parts (generally the case for a sufficiently mature component), these subcomp
 may now be initialised by calls to the standard function . Similar to , this call onents Infusion Framework fluid.initSubcomponents fluid.initView

delegates a considerable quantity of boring lookup, instantiation and wiring code to the framework. and actually amounts to fluid.initSubcomponents
a mini- system.Inversion of Control

The set of subcomponents for a component are organised, from the point of view of the developer writing the top-level creator function, according to
subcomponents of equal . That is, the caller of specifies, along with a name identifying the of instantiation signature initSubcomponents signature class
the components, a number of that will be supplied to any subcomponents that are instantiated by this call. stereotypical arguments initSubcomponents
returns an array of all of the components which were instantiated; their number and type is actually configured by the overall user of the component in the
options structure, and so this decision is decoupled from code in the component implementor.

If there is, by design, just a single component in the signature class, a call to may be made instead, which will return just one initSubcomponent
component.

For example, to continue with our Reorderer sample,

that.layoutHandler = fluid.initSubcomponent(thatReorderer,
 "layoutHandler", [container, options, dropManager, that.dom]);

This directive explains that there is one member of the signature class, which it has named . The single which the "layoutHandler" layoutHandler
user has configured, will be instantiated with the arguments supplied in the argument list in the final position - you can see the reuse of the DOM Binder
object that was created by earlier.dom initView

Mature life, for a component

The last line of a component creator function should read . After this, the component is released "out into the wild", to live its life. In return that;
general, the framework has stepped out of the loop at this point, but the facilities it has endowed the component with will live on. For example, users of the
component will know that listeners may be added and removed from the component at the position , and DOM binding directives may be that.events
issued at etc.that.dom

There is no particular destruction semantics for a Fluid Component – since Javascript is a garbage-collected language, and does not really allow any form
of resource usage other than DOM elements, this is generally appropriate.

A component may express a stronger contract by representing itself as -bearing, which is described in and model Fluid Component API Component Model
. It is probable that a future version of the Infusion framework will assist this by supplying an initialisation directive to Interactions and API initModel

accompany , in association with the initView ChangeApplier

https://wiki.fluidproject.org/display/Infusion13/DOM+Binder
https://wiki.fluidproject.org/display/Infusion13/that
http://en.wikipedia.org/wiki/Convention_over_Configuration
https://wiki.fluidproject.org/display/Infusion13/Infusion+Framework
https://wiki.fluidproject.org/display/Infusion13/IoC
https://wiki.fluidproject.org/display/Infusion13/Fluid+Component+API
https://wiki.fluidproject.org/display/docsArchive/Component+Model+Interactions+and+API
https://wiki.fluidproject.org/display/docsArchive/Component+Model+Interactions+and+API
https://wiki.fluidproject.org/display/Infusion13/ChangeApplier

	Component Lifecycle

