
DOM Binder
DOM Binder Overview

The purpose of the DOM Binder is to relax the coupling between a
component and its markup. Whilst the Fluid framework is built on jQuery, and
uses that framework's selector engine throughout to perform queries on the
DOM, the extra level of indirection provided by the DOM Binder allows a
complete separation of concerns. Fluid components are by a parameterised
set of named selectors, managed by the DOM Binder instance attached to
each top-level component. In this way, explicit selectors never appear in
component code - leaving the components free of any baked dependence on
markup structure.

There are other benefits to having DOM searches (via jQuery) managed in a
central location - component authors can get access to fine-grained control
over caching and lifetime of search results, which might otherwise become
expensive if performed repeatedly - along with its basic method, locate()
each DOM binder has a method which will not perform a fastLocate()
DOM search if there is a cached result.

Components access elements in the DOM through unique selector names.
The component defines default values for the selectors, but implementors
are free to override the defaults if they need to change the structure of the
markup.

On This Page

DOM Binder Overview
How Infusion Components Use the DOM Binder
Using the DOM Binder

Other methods on the DOM Binder - caching
Example (Inline Edit)

See Also

DOM Binder API
How to Define a Unit
Fluid Component API

Still need help?

Join the and ask your questions there.infusion-users mailing list

How Infusion Components Use the DOM Binder

Each standard Fluid component has a DOM binder created automatically as a result of its call to the standard framework function . This call initView
takes a set of options from the member from the component's top-level options, and uses them to initialise the DOM binder.selectors

Component developers declare the component's selectors in the defaults for the component:

fluid.defaults("fluid.newComponent", {
 selectors: {
 uiBit1: ".className1",
 uiBit2: ".className2"
 }
});

When the is initialised with , the DOM binder is created and attached to the top-level (the component itself) as the member View fluid.initView() that
named . In addition, or convenience, the DOM Binder's function is added as a top-level instance memember on the . For example, to dom locate() View
get a named element, you can simply call) (see below for more information).that.locate(name)

https://wiki.fluidproject.org/display/Infusion13/DOM+Binder+API
https://wiki.fluidproject.org/display/Infusion13/How+to+Define+a+Unit
https://wiki.fluidproject.org/display/Infusion13/Fluid+Component+API
http://fluidproject.org/mailman/listinfo/infusion-users
https://wiki.fluidproject.org/display/Infusion13/View
https://wiki.fluidproject.org/display/Infusion13/that
https://wiki.fluidproject.org/display/Infusion13/View

The other crucial configuration passed to the DOM binder is the overall container for the component - by convention, this is passed as the first argument to
the component's constructor function (recall that the standard signature for a fluid component is . fluid.componentName(container, options)
Unless they are otherwise qualified, all searches performed by the DOM binder attached to a particular component will be automatically scoped to its own
container.

Using the DOM Binder

The component must use the DOM Binder for any access to the DOM elements that make up the component, using the function:locate()

that.locate(name, localContainer);

(For information about parameters, for this and other DOM Binder functions, see .)DOM Binder API

Other methods on the DOM Binder - caching

The other methods on the DOM Binder are less frequently used, and are not attached to the top-level in the way that is. They need to be that locate()
accessed through the DOM Binder's own object, which by is available as .initView that.dom

that.dom.fastLocate(name, localContainer);

The signature and function of are exactly the same as that for . The difference is that, if the results of the search are already present fastLocate locate
in the DOM binder's cache, they will be returned directly without searching the DOM again. This can be very much more rapid, but runs the risk of returning
stale results.

The DOM binder's cache is populated for a query, whenever a query is submitted via .locate()

that.dom.clear()

The method completely clears the cache for the DOM binder for all queries. It should be used whenever, for example, the container's markup is clear()
replaced completely, or otherwise is known to change in a wholesale way.

that.dom.refresh(names, localContainer);

The method refreshes the cache for one or more selector names, ready for subsequent calls to . It functions exactly as for a refresh() fastLocate()
call to except thatlocate()

The queried results are not returned to the user, but simply populated into the cache, and
More than one selector name (as an array) may be sent to rather than just a single one.refresh

Example (Inline Edit)

The component requires three parts in its user interface:Inline Edit

a field to display the text that can be edited
a field that can actually edit the text
a container for the edit field

The component declares selector names for these elements, and provides defaults, in its call to :fluid.defaults()

fluid.defaults("inlineEdit", {
 selectors: {
 text: ".text",
 editContainer: ".editContainer",
 edit: ".edit"
 },

Here, the default selectors use class names. To use these defaults, an implementer can simply attach these class names to the relevant elements in mark-
up. Alternatively, the implementer may choose to override some or all of these selectors with other selectors. For example:

https://wiki.fluidproject.org/display/Infusion13/DOM+Binder+API
https://wiki.fluidproject.org/display/Infusion13/that
https://wiki.fluidproject.org/display/Infusion13/Inline+Edit

var myOpts = {
 selectors: {
 text: "#display-text",
 edit: "#edit-field"
 }
};
var myIEdit = fluid.inlineEdit(myContainer, myOpts);

In this example, the implementer is using element IDs to identify the text and edit fields. Because a custom is not included, it will default editContainer
to the class declared by the component.

To access the DOM elements, the Inline Edit component uses its DOM Binder and the selector names:

that.viewEl = that.locate("text");
that.editContainer = that.locate("editContainer");
that.editField = that.locate("edit", that.editContainer);

In this way, the Inline Edit component is completely ignorant of the mark-up it is working with, or even the selectors used. When the markup changes, code
doesn't break.

	DOM Binder

